Properties

Label 774144.a.3024.A
Order $ 2^{8} $
Index $ 2^{4} \cdot 3^{3} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^8$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(2\)
Generators: $\langle(11,12)(13,14), (1,2)(13,14), (13,14)(17,18), (7,8)(13,14), (15,16)(17,18), (5,6)(17,18), (3,4)(17,18), (9,10)(13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^9.{}^2G(2,3)$
Order: \(774144\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $\SL(2,8):C_6$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Automorphism Group: ${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $1$

The quotient is nonabelian and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8:{}^2G(2,3)$, of order \(387072\)\(\medspace = 2^{11} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $\GL(8,2)$, of order \(5348063769211699200\)\(\medspace = 2^{28} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 17 \cdot 31 \cdot 127 \)
$W$${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2^9$
Normalizer:$C_2^9.{}^2G(2,3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^9.{}^2G(2,3)$