Properties

Label 774.4.9.a1.a1
Order $ 2 \cdot 43 $
Index $ 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{43}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $a, b^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_9\times D_{43}$
Order: \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \)
Exponent: \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times F_{43}$, of order \(10836\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \cdot 43 \)
$\operatorname{Aut}(H)$ $F_{43}$, of order \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
$\operatorname{res}(\operatorname{Aut}(G))$$F_{43}$, of order \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_{43}$, of order \(86\)\(\medspace = 2 \cdot 43 \)

Related subgroups

Centralizer:$C_9$
Normalizer:$C_9\times D_{43}$
Complements:$C_9$
Minimal over-subgroups:$C_3\times D_{43}$
Maximal under-subgroups:$C_{43}$$C_2$

Other information

Möbius function$0$
Projective image$C_9\times D_{43}$