Subgroup ($H$) information
Description: | $C_3\times D_{43}$ |
Order: | \(258\)\(\medspace = 2 \cdot 3 \cdot 43 \) |
Index: | \(3\) |
Exponent: | \(258\)\(\medspace = 2 \cdot 3 \cdot 43 \) |
Generators: |
$a, b^{129}, b^{9}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_9\times D_{43}$ |
Order: | \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \) |
Exponent: | \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_3$ |
Order: | \(3\) |
Exponent: | \(3\) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6\times F_{43}$, of order \(10836\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \cdot 43 \) |
$\operatorname{Aut}(H)$ | $C_2\times F_{43}$, of order \(3612\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 43 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times F_{43}$, of order \(3612\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 43 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
$W$ | $D_{43}$, of order \(86\)\(\medspace = 2 \cdot 43 \) |
Related subgroups
Centralizer: | $C_9$ | ||
Normalizer: | $C_9\times D_{43}$ | ||
Minimal over-subgroups: | $C_9\times D_{43}$ | ||
Maximal under-subgroups: | $C_{129}$ | $D_{43}$ | $C_6$ |
Other information
Möbius function | $-1$ |
Projective image | $C_3\times D_{43}$ |