Properties

Label 774.4.2.a1.a1
Order $ 3^{2} \cdot 43 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{387}$
Order: \(387\)\(\medspace = 3^{2} \cdot 43 \)
Index: \(2\)
Exponent: \(387\)\(\medspace = 3^{2} \cdot 43 \)
Generators: $b^{43}, b^{9}, b^{129}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, cyclic (hence abelian, elementary ($p = 3,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_9\times D_{43}$
Order: \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \)
Exponent: \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times F_{43}$, of order \(10836\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \cdot 43 \)
$\operatorname{Aut}(H)$ $C_6\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(43\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{387}$
Normalizer:$C_9\times D_{43}$
Complements:$C_2$
Minimal over-subgroups:$C_9\times D_{43}$
Maximal under-subgroups:$C_{129}$$C_9$

Other information

Möbius function$-1$
Projective image$D_{43}$