Properties

Label 770.10.35.a1.a1
Order $ 2 \cdot 11 $
Index $ 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(35\)\(\medspace = 5 \cdot 7 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a, b^{35}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{11}\times D_{35}$
Order: \(770\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(770\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{10}\times F_5\times F_7$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\operatorname{res}(S)$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{22}$
Normal closure:$C_{11}\times D_{35}$
Core:$C_{11}$
Minimal over-subgroups:$C_{11}\times D_7$$D_5\times C_{11}$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Number of subgroups in this conjugacy class$35$
Möbius function$1$
Projective image$D_{35}$