Properties

Label 7680.bf.60.co1
Order $ 2^{7} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,7)(2,8)(3,6)(4,5)(9,12)(10,11)(13,21)(14,22)(15,24)(16,23)(17,19)(18,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^7:A_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.S_5$
$\operatorname{Aut}(H)$ $C_2^{12}.\POPlus(4,3)$, of order \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \)
$W$$C_2^5$, of order \(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^7.C_2^2$
Normal closure:$C_2\wr A_5$
Core:$C_2^6$
Minimal over-subgroups:$C_2^5:D_{10}$$C_2^2\wr S_3$$C_2^5:D_4$$C_2^3.C_2^5$$C_2^2:D_4^2$
Maximal under-subgroups:$C_2^6$$D_4\times C_2^3$$C_2^3:D_4$$C_2^3:D_4$$C_2^4:C_4$$D_4\times C_2^3$$C_2^3:D_4$$C_2^3:D_4$$C_2^4:C_4$$C_2^3:D_4$$C_2^3:D_4$$C_2^3:D_4$$C_2^3:D_4$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-4$
Projective image$C_2^6.A_5$