Subgroup ($H$) information
| Description: | $C_2^4:D_4$ |
| Order: | \(128\)\(\medspace = 2^{7} \) |
| Index: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\langle(1,7)(2,8)(3,6)(4,5)(9,12)(10,11)(13,21)(14,22)(15,24)(16,23)(17,19)(18,20) \!\cdots\! \rangle$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_2^7:A_5$ |
| Order: | \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^8.S_5$ |
| $\operatorname{Aut}(H)$ | $C_2^{12}.\POPlus(4,3)$, of order \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \) |
| $W$ | $C_2^5$, of order \(32\)\(\medspace = 2^{5} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $15$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-4$ |
| Projective image | $C_2^6.A_5$ |