Subgroup ($H$) information
| Description: | $C_2^3:D_4$ | 
| Order: | \(64\)\(\medspace = 2^{6} \) | 
| Index: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | $\langle(13,14)(15,16)(21,22)(23,24), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16) \!\cdots\! \rangle$ | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_2^7:A_5$ | 
| Order: | \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $1$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^8.S_5$ | 
| $\operatorname{Aut}(H)$ | $C_2^9.S_4$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \) | 
| $W$ | $C_2^5$, of order \(32\)\(\medspace = 2^{5} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $15$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $C_2^6.A_5$ | 
