Properties

Label 7680.bf.10.a1
Order $ 2^{8} \cdot 3 $
Index $ 2 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,17,2,18)(3,19,4,20)(5,16)(6,15)(7,13)(8,14)(9,12)(10,11)(21,23)(22,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^7:A_5$
Order: \(7680\)\(\medspace = 2^{9} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.S_5$
$\operatorname{Aut}(H)$ $A_4^2.C_2^5.C_2^2$
$W$$C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^3:\GL(2,\mathbb{Z}/4)$
Normal closure:$C_2^7:A_5$
Core:$C_2^7$
Minimal over-subgroups:$C_2^7:A_5$
Maximal under-subgroups:$C_2^5:A_4$$C_2^2\wr S_3$$C_2^4.S_4$$C_2\wr S_3$$C_2\wr S_3$$C_2^5:D_4$$C_2\times \GL(2,\mathbb{Z}/4)$$C_2\times \GL(2,\mathbb{Z}/4)$

Other information

Number of subgroups in this autjugacy class$10$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^6.A_5$