Properties

Label 768.87077.6.a1.a1
Order $ 2^{7} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:C_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ad, c, bd^{2}e^{3}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_{12}).D_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^8.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^7.(D_4\times S_4)$, of order \(24576\)\(\medspace = 2^{13} \cdot 3 \)
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$(C_2^3\times C_{12}).D_4$
Complements:$S_3$ $S_3$
Minimal over-subgroups:$C_2^5:C_{12}$$C_2^5.D_4$
Maximal under-subgroups:$D_4\times C_2^3$$C_2^4:C_4$$C_2^4:C_4$$C_2^4:C_4$$C_2^4:C_4$$C_2^4:C_4$$C_2^4:C_4$$C_2^4:C_4$$C_2^4:C_4$

Other information

Möbius function not computed
Projective image not computed