Properties

Label 768.87077.12.r1.a1
Order $ 2^{6} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ad^{3}, c, be^{3}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2^3\times C_{12}).D_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^8.C_2^5)$
$\operatorname{Aut}(H)$ $C_2^6:C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_2^5:C_{12}$
Normal closure:$C_2^5:C_4$
Core:$C_2^3:C_4$
Minimal over-subgroups:$C_2^4:C_{12}$$C_2^5:C_4$
Maximal under-subgroups:$C_2^3:C_4$$C_2^2\times D_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$
Autjugate subgroups:768.87077.12.r1.b1768.87077.12.r1.c1768.87077.12.r1.d1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed