Subgroup ($H$) information
Description: | $C_2^3\times C_6$ |
Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
1 & 21 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
1 & 8 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
1 & 12 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
19 & 12 \\
0 & 19
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
Description: | $C_2^6:D_6$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.
Quotient group ($Q$) structure
Description: | $C_2^4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(2\) |
Automorphism Group: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Outer Automorphisms: | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^{15}.\PSL(2,7)\times S_3$ |
$\operatorname{Aut}(H)$ | $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$\card{W}$ | \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |