Properties

Label 768.375391.16.g1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_6$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 1 & 21 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 12 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2^6:D_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and rational.

Quotient group ($Q$) structure

Description: $C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2\)
Automorphism Group: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Outer Automorphisms: $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{15}.\PSL(2,7)\times S_3$
$\operatorname{Aut}(H)$ $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$C_2^6:D_6$
Complements:$C_2^4$
Minimal over-subgroups:$C_{12}:C_2^3$$C_2^3\times D_6$$C_2^3:D_6$
Maximal under-subgroups:$C_2^2\times C_6$$C_2^2\times C_6$$C_2^4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed