Properties

Label 768.322278.96.g1
Order $ 2^{3} $
Index $ 2^{5} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(2,5)(6,8), (1,3)(2,6)(4,7)(5,8), (1,4)(2,5)(3,7)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $(D_6\times C_2^4):C_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3:D_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\times C_2^6:S_4$, of order \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Outer Automorphisms: $C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.D_6^2.C_2^3$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4\times C_6$
Normalizer:$(D_6\times C_2^4):C_4$
Minimal over-subgroups:$C_2^2\times C_6$$C_2^4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2^2:C_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed