Properties

Label 768.322278.48.bv1
Order $ 2^{4} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,5)(6,8), (1,2,3,6)(4,5,7,8), (1,3)(2,6)(4,7)(5,8), (1,4)(2,5)(3,7)(6,8)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(D_6\times C_2^4):C_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_2^4.D_6^2.C_2^3$
$\operatorname{Aut}(H)$ $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$C_2^5:C_{12}$
Normal closure:$C_2^3:C_4$
Core:$C_2^3$
Minimal over-subgroups:$C_2^2:C_{12}$$C_2^3:C_4$$C_2^3:C_4$$C_2^3:C_4$
Maximal under-subgroups:$C_2^3$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed