Subgroup ($H$) information
Description: | $C_2^5:D_4$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Index: | \(3\) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha & 1 & \alpha & 0 \\ 0 & 1 & 0 & 0 \\ 1 & \alpha & \alpha & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 0 \\ 0 & 1 & 0 & 0 \\ \alpha & \alpha^{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha & 1 & \alpha & 0 \\ 0 & 1 & 0 & \alpha^{2} \\ 1 & \alpha & \alpha & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & 1 & \alpha^{2} \\ \alpha & \alpha & 1 & 0 \\ \alpha & \alpha^{2} & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & \alpha^{2} & \alpha^{2} & 0 \\ \alpha^{2} & 1 & \alpha^{2} & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & 1 & 0 \\ 0 & 1 & 0 & \alpha \\ \alpha^{2} & 1 & \alpha^{2} & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}0 & \alpha^{2} & 0 & 0 \\ 1 & 1 & \alpha & 0 \\ \alpha^{2} & \alpha & 1 & \alpha^{2} \\ \alpha^{2} & 1 & \alpha & 0 \\ \end{array}\right)$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $C_2^3:\GL(2,\mathbb{Z}/4)$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $A_4^2.C_2^5.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2^{15}.C_2^4.\PSL(2,7)$ |
$\operatorname{res}(S)$ | $C_2^7:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_2^4$, of order \(16\)\(\medspace = 2^{4} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_2^3:S_4$ |