Properties

Label 768.1090187.3.a1
Order $ 2^{8} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(3\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha & 1 & \alpha & 0 \\ 0 & 1 & 0 & 0 \\ 1 & \alpha & \alpha & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}0 & \alpha & \alpha^{2} & 0 \\ 0 & 1 & 0 & 0 \\ \alpha & \alpha^{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha & 1 & \alpha & 0 \\ 0 & 1 & 0 & \alpha^{2} \\ 1 & \alpha & \alpha & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & 1 & \alpha^{2} \\ \alpha & \alpha & 1 & 0 \\ \alpha & \alpha^{2} & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 1 & \alpha^{2} & \alpha^{2} & 0 \\ \alpha^{2} & 1 & \alpha^{2} & \alpha \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}\alpha^{2} & \alpha^{2} & 1 & 0 \\ 0 & 1 & 0 & \alpha \\ \alpha^{2} & 1 & \alpha^{2} & 1 \\ 0 & 0 & 0 & 1 \\ \end{array}\right), \left(\begin{array}{llll}0 & \alpha^{2} & 0 & 0 \\ 1 & 1 & \alpha & 0 \\ \alpha^{2} & \alpha & 1 & \alpha^{2} \\ \alpha^{2} & 1 & \alpha & 0 \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^3:\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^2$
$\operatorname{Aut}(H)$ $C_2^{15}.C_2^4.\PSL(2,7)$
$\operatorname{res}(S)$$C_2^7:D_6$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^3:\GL(2,\mathbb{Z}/4)$
Core:$C_2^7$
Minimal over-subgroups:$C_2^3:\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^7$$C_2^4:D_4$$C_2^5:C_4$$C_2^4:D_4$$C_2^5:C_4$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$$C_2^3\wr C_2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^3:S_4$