Properties

Label 768.1090131.24.a1.b1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(2\)
Generators: $\langle(1,6)(2,3)(4,12)(5,13)(7,9)(8,10)(11,14)(15,16), (1,2)(3,6)(4,7)(5,8)(9,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^5:S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^3:(C_2^2\times S_4)$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \)
$\operatorname{Aut}(H)$ $\GL(5,2)$, of order \(9999360\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^5:S_4$
Complements:$S_4$ $S_4$ $S_4$ $S_4$
Minimal over-subgroups:$C_2^3:A_4$$C_2^3:D_4$$C_2^3:D_4$
Maximal under-subgroups:$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$
Autjugate subgroups:768.1090131.24.a1.a1

Other information

Möbius function$-12$
Projective image$C_4^2:S_4$