Properties

Label 768.1089108.24.bq1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,2,4,8)(3,7,5,6)(9,12)(10,11), (1,5)(2,6)(3,4)(7,8), (1,3)(2,7)(4,5)(6,8), (9,10)(11,12), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^5:S_4$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3.C_6.C_2^3$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_4\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^4:D_4$
Core:$C_2^4$
Minimal over-subgroups:$D_4\times C_2^3$$C_2^4:C_4$$D_4:C_2^3$
Maximal under-subgroups:$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^3:S_4$