Properties

Label 768.1088504.4.g1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:\OD_{32}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 17 & 16 \\ 16 & 1 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 0 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 23 & 13 \\ 4 & 9 \end{array}\right), \left(\begin{array}{rr} 19 & 21 \\ 23 & 12 \end{array}\right), \left(\begin{array}{rr} 15 & 0 \\ 0 & 15 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2\times A_4:\OD_{32}$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^3\times A_4).C_2^6$
$\operatorname{Aut}(H)$ $(C_2^3\times C_{12}):C_2^4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$(C_2^3\times C_{12}):C_2^4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$C_6:\OD_{32}$
Normal closure:$C_2\times A_4:\OD_{32}$
Core:$C_2^2\times C_8$
Minimal over-subgroups:$C_2\times A_4:\OD_{32}$
Maximal under-subgroups:$C_2^2\times C_{24}$$C_6:C_{16}$$C_6:C_{16}$$C_3:\OD_{32}$$C_3:\OD_{32}$$C_3:\OD_{32}$$C_3:\OD_{32}$$C_2\times \OD_{32}$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$C_2\times S_4$