Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(2\) |
Generators: |
$\left(\begin{array}{rr}
17 & 16 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
17 & 0 \\
16 & 17
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $C_4^3.D_6$ |
Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_8\times S_4$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Automorphism Group: | $C_2^3\times S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Outer Automorphisms: | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $-1$ |
Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2:C_3.C_2^5$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(256\)\(\medspace = 2^{8} \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Centralizer: | $C_4^2\times C_8$ | |||||
Normalizer: | $C_4^3.D_6$ | |||||
Minimal over-subgroups: | $A_4$ | $C_2^3$ | $D_4$ | $D_4$ | $C_2\times C_4$ | $C_2\times C_4$ |
Maximal under-subgroups: | $C_2$ |
Other information
Möbius function | $0$ |
Projective image | $C_4^3.D_6$ |