Properties

Label 768.1084399.6.e1
Order $ 2^{7} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(9,11)(10,12), (1,3)(2,8)(4,5)(6,7)(10,12), (1,5)(2,7)(3,4)(6,8), (1,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^7:C_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2^{12}.\POPlus(4,3)$, of order \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^5:D_4$
Core:$D_4\times C_2^3$
Minimal over-subgroups:$C_2^5:D_4$
Maximal under-subgroups:$D_4\times C_2^3$$C_2^3:D_4$$C_2^6$$C_2^4:C_4$$C_2^3:D_4$$D_4\times C_2^3$$C_2^4:C_4$$D_4\times C_2^3$$C_2^4:C_4$$C_2^3:D_4$$C_2^3:D_4$$C_2^3:D_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed