Properties

Label 768.1084399.3.a1
Order $ 2^{8} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(3\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(9,11)(10,12), (2,6)(7,8), (1,3)(2,8)(4,5)(6,7)(10,12), (1,4)(2,6)(3,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^7:C_6$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:C_3.C_2^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2^{15}.C_2^4.\PSL(2,7)$
$\card{W}$\(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^7:C_6$
Complements:$C_3$
Minimal over-subgroups:$C_2^7:C_6$
Maximal under-subgroups:$C_2^7$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$$C_2^4:D_4$$C_2^5:C_4$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image not computed