Subgroup ($H$) information
| Description: | $C_2\times C_6^4.S_3^2$ |
| Order: | \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Generators: |
$\langle(23,24)(28,30), (19,21)(27,29), (4,17,8)(6,14,7)(22,26)(27,29), (1,9,17,10,2,4,18,13,8) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_3^5.C_2^7:S_4$ |
| Order: | \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^3\times C_6^4.(C_6\times A_4).C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^8.D_5^2.C_2^3$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | $C_6^4.D_6^2$ |
| Normal closure: | $C_3^5.C_2\wr S_4$ |
| Core: | $C_6^5.C_2$ |
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |