Properties

Label 746496.q.8.E
Order $ 2^{7} \cdot 3^{6} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6^4.S_3^2$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(23,24)(28,30), (19,21)(27,29), (4,17,8)(6,14,7)(22,26)(27,29), (1,9,17,10,2,4,18,13,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^5.C_2^7:S_4$
Order: \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times C_6^4.(C_6\times A_4).C_2^4$
$\operatorname{Aut}(H)$ $C_2^8.D_5^2.C_2^3$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.D_6^2$
Normal closure:$C_3^5.C_2\wr S_4$
Core:$C_6^5.C_2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed