Properties

Label 746496.p.8.CN
Order $ 2^{7} \cdot 3^{6} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:(C_2\times A_4^2:C_4)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(4,13)(5,6)(8,10)(11,12)(15,18)(16,17)(19,21)(20,24)(22,26)(23,25)(27,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^4.D_6^2:C_2^2$
Order: \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.A_4^2.C_3^2.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$W$$C_3^4.S_4^2:C_2^2$, of order \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.C_6^2:D_4$
Normal closure:$C_6^4.C_6^2:C_4$
Core:$(C_6^2\times A_4).C_3^2.D_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_6^4.D_6^2:C_2^2$