Properties

Label 746496.bh.64.a1
Order $ 2^{4} \cdot 3^{6} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(13,19,18)(15,20,16), (15,20,16), (17,21)(18,19), (4,10)(7,12)(8,9), (2,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2^3\times C_6^3).C_6^2:D_6$
Order: \(746496\)\(\medspace = 2^{10} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.(C_3^2\times S_3^3):D_6$, of order \(1492992\)\(\medspace = 2^{11} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$W$$C_3^5:(C_2\times S_4)$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^5:(C_2\times S_4)$
Normal closure:$(C_2^3\times C_6^3).C_6^2:D_6$
Core:$C_3:S_3^2$

Other information

Number of subgroups in this autjugacy class$64$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$(C_2^3\times C_6^3).C_6^2:D_6$