Properties

Label 74112.v.16.b1.a1
Order $ 2^{3} \cdot 3 \cdot 193 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{4632}$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Generators: $b^{1158}, b^{2316}, b^{24}, b^{1544}, b^{579}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial) and cyclic (hence abelian, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{193}:C_{192}$
Order: \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4:S_3^3$, of order \(1185792\)\(\medspace = 2^{11} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2^3\times C_{192}$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$C_{16}$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{4632}$
Normalizer:$D_{193}:C_{192}$
Minimal over-subgroups:$C_3\times C_{193}:(C_2\times C_8)$
Maximal under-subgroups:$C_{2316}$$C_{1544}$$C_{24}$

Other information

Möbius function$0$
Projective image$C_{193}:C_{16}$