Subgroup ($H$) information
Description: | $C_{1544}.C_8$ |
Order: | \(12352\)\(\medspace = 2^{6} \cdot 193 \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(3088\)\(\medspace = 2^{4} \cdot 193 \) |
Generators: |
$b^{1158}, a^{8}b^{3860}, b^{2316}, a^{12}, b^{579}, a^{6}, b^{24}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $C_{1544}.C_{48}$ |
Order: | \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
Exponent: | \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_3\times S_6$, of order \(2371584\)\(\medspace = 2^{12} \cdot 3 \cdot 193 \) |
$\operatorname{Aut}(H)$ | $C_{772}.C_{96}.C_2^4$ |
$W$ | $C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \) |
Related subgroups
Other information
Möbius function | $1$ |
Projective image | $C_4\times C_3^3:S_4$ |