Properties

Label 74112.o.6.a1.a1
Order $ 2^{6} \cdot 193 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1544}.C_8$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Generators: $b^{1158}, a^{8}b^{3860}, b^{2316}, a^{12}, b^{579}, a^{6}, b^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{1544}.C_{48}$
Order: \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Exponent: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times S_6$, of order \(2371584\)\(\medspace = 2^{12} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $C_{772}.C_{96}.C_2^4$
$W$$C_{193}:C_{16}$, of order \(3088\)\(\medspace = 2^{4} \cdot 193 \)

Related subgroups

Centralizer:$C_{24}$
Normalizer:$C_{1544}.C_{48}$
Minimal over-subgroups:$C_3\times C_{193}:(C_4\times C_{16})$$C_{1544}.C_{16}$
Maximal under-subgroups:$C_{1544}:C_4$$D_{193}:C_{16}$$D_{193}:C_{16}$$C_4\times C_{16}$

Other information

Möbius function$1$
Projective image$C_4\times C_3^3:S_4$