Subgroup ($H$) information
Description: | $C_{10}$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Index: | \(74\)\(\medspace = 2 \cdot 37 \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$a^{2}, b^{111}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $C_{185}:C_4$ |
Order: | \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \) |
Exponent: | \(740\)\(\medspace = 2^{2} \cdot 5 \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{185}.C_9.C_4^2$ |
$\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{10}$ | |
Normalizer: | $C_5:C_4$ | |
Normal closure: | $C_5\times D_{37}$ | |
Core: | $C_5$ | |
Minimal over-subgroups: | $C_5\times D_{37}$ | $C_5:C_4$ |
Maximal under-subgroups: | $C_5$ | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $37$ |
Möbius function | $1$ |
Projective image | $C_{185}:C_4$ |