Properties

Label 736.50.32.a1.a1
Order $ 23 $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{23}$
Order: \(23\)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(23\)
Generators: $c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $23$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{92}.D_4$
Order: \(736\)\(\medspace = 2^{5} \cdot 23 \)
Exponent: \(184\)\(\medspace = 2^{3} \cdot 23 \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4.D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\wr D_4$, of order \(128\)\(\medspace = 2^{7} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}\times D_4^2.C_2$, of order \(2816\)\(\medspace = 2^{8} \cdot 11 \)
$\operatorname{Aut}(H)$ $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{92}.D_4$
Normalizer:$C_{92}.D_4$
Minimal over-subgroups:$C_{46}$$C_{46}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_4.D_4$