Properties

Label 73205.j.1331.b1.a1
Order $ 5 \cdot 11 $
Index $ 11^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_5$
Order: \(55\)\(\medspace = 5 \cdot 11 \)
Index: \(1331\)\(\medspace = 11^{3} \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 8 & 0 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 0 & 9 & 9 & 0 \\ 6 & 0 & 4 & 0 \\ 4 & 2 & 2 & 5 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Ambient group ($G$) information

Description: $C_{11}^3:(C_{11}:C_5)$
Order: \(73205\)\(\medspace = 5 \cdot 11^{4} \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}:C_{10}^2$, of order \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$\card{W}$\(55\)\(\medspace = 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{11}$
Normalizer:$C_{11}:C_{55}$
Normal closure:$C_{11}^3:(C_{11}:C_5)$
Core:$C_1$
Minimal over-subgroups:$C_{11}:C_{55}$$C_{11}^2:C_5$
Maximal under-subgroups:$C_{11}$$C_5$

Other information

Number of subgroups in this conjugacy class$121$
Möbius function not computed
Projective image not computed