Subgroup ($H$) information
Description: | $F_{61}$ |
Order: | \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \) |
Index: | \(2\) |
Exponent: | \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \) |
Generators: |
$a^{30}b^{112}, b^{2}, a^{12}, a^{40}, a^{15}b$
|
Derived length: | $2$ |
The subgroup is normal, maximal, a direct factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Ambient group ($G$) information
Description: | $C_2\times F_{61}$ |
Order: | \(7320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 61 \) |
Exponent: | \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times F_{61}$, of order \(7320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 61 \) |
$\operatorname{Aut}(H)$ | $F_{61}$, of order \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \) |
$W$ | $F_{61}$, of order \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_2\times F_{61}$ |