Properties

Label 7320.a.122.b1.b1
Order $ 2^{2} \cdot 3 \cdot 5 $
Index $ 2 \cdot 61 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{60}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Index: \(122\)\(\medspace = 2 \cdot 61 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{15}b, a^{12}b^{102}, a^{30}b^{112}, a^{40}b^{108}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_2\times F_{61}$
Order: \(7320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 61 \)
Exponent: \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_{61}$, of order \(7320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 61 \)
$\operatorname{Aut}(H)$ $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{60}$
Normalizer:$C_2\times C_{60}$
Normal closure:$F_{61}$
Core:$C_1$
Minimal over-subgroups:$F_{61}$$C_2\times C_{60}$
Maximal under-subgroups:$C_{30}$$C_{20}$$C_{12}$
Autjugate subgroups:7320.a.122.b1.a1

Other information

Number of subgroups in this conjugacy class$61$
Möbius function$1$
Projective image$C_2\times F_{61}$