Properties

Label 729.228.81.g1.a1
Order $ 3^{2} $
Index $ 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(3\)
Generators: $bcd^{2}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^3.C_3^3$
Order: \(729\)\(\medspace = 3^{6} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(236196\)\(\medspace = 2^{2} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(13122\)\(\medspace = 2 \cdot 3^{8} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^4.C_3$
Normal closure:$C_3^3$
Core:$C_3$
Minimal over-subgroups:$C_3^3$$C_3^3$$C_9:C_3$$C_9:C_3$$C_9:C_3$
Maximal under-subgroups:$C_3$$C_3$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$\He_3:C_3^2$