Properties

Label 729.228.27.h1.a1
Order $ 3^{3} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(3\)
Generators: $b, cd^{2}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_3^3.C_3^3$
Order: \(729\)\(\medspace = 3^{6} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(236196\)\(\medspace = 2^{2} \cdot 3^{10} \)
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$\operatorname{res}(S)$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(729\)\(\medspace = 3^{6} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^4$
Normalizer:$C_3^4$
Normal closure:$C_3^4$
Core:$C_3$
Minimal over-subgroups:$C_3^4$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$$C_3^2$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$\He_3:C_3^2$