Properties

Label 7200.dx.160.a1.a1
Order $ 3^{2} \cdot 5 $
Index $ 2^{5} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{15}$
Order: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Index: \(160\)\(\medspace = 2^{5} \cdot 5 \)
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Generators: $\langle(1,2,3,5,4)(6,12,13)(8,10,11)(9,15,14), (1,2,3,5,4), (1,5,2,4,3)(6,10,9)(8,14,13)(11,15,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $S_6:C_{10}$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times \GL(2,3)$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$\SD_{16}$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_3\times C_{15}$
Normalizer:$F_9:C_{10}$
Normal closure:$C_5\times A_6$
Core:$C_5$
Minimal over-subgroups:$S_3\times C_{15}$$C_{15}:S_3$
Maximal under-subgroups:$C_{15}$$C_3^2$

Other information

Number of subgroups in this conjugacy class$10$
Möbius function$0$
Projective image$S_6:C_2$