Properties

Label 7200.dx.144.a1.a1
Order $ 2 \cdot 5^{2} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{10}$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\langle(6,14)(7,12)(8,11)(9,15)(10,13), (1,4,5,3,2)(6,12,13,9,8)(7,10,15,11,14), (1,2,3,5,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $S_6:C_{10}$
Order: \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times S_6:C_2$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_5\times C_{10}$
Normalizer:$C_{10}\times F_5$
Normal closure:$C_5\times \PGL(2,9)$
Core:$C_5$
Minimal over-subgroups:$C_5\times D_{10}$
Maximal under-subgroups:$C_5^2$$C_{10}$$C_{10}$$C_{10}$

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$0$
Projective image$S_6:C_2$