Subgroup ($H$) information
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Exponent: | \(2\) | 
| Generators: | $b^{6}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is the commutator subgroup (hence characteristic and normal), the Frattini subgroup, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $Q_8\times C_3^2$ | 
| Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).
Quotient group ($Q$) structure
| Description: | $C_6^2$ | 
| Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| Outer Automorphisms: | $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4\times \GL(2,3)$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) | 
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $Q_8\times C_3^2$ | ||||||
| Normalizer: | $Q_8\times C_3^2$ | ||||||
| Minimal over-subgroups: | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_4$ | $C_4$ | $C_4$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Möbius function | $6$ | 
| Projective image | $C_6^2$ | 
