Subgroup ($H$) information
Description: | $C_4$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
Description: | $Q_8\times C_3^2$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).
Quotient group ($Q$) structure
Description: | $C_3\times C_6$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Outer Automorphisms: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $S_4\times \GL(2,3)$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_3\times C_{12}$ | ||||
Normalizer: | $Q_8\times C_3^2$ | ||||
Minimal over-subgroups: | $C_{12}$ | $C_{12}$ | $C_{12}$ | $C_{12}$ | $Q_8$ |
Maximal under-subgroups: | $C_2$ | ||||
Autjugate subgroups: | 72.38.18.a1.a1 | 72.38.18.a1.c1 |
Other information
Möbius function | $-3$ |
Projective image | $C_6^2$ |