Properties

Label 714.8.119.a1.a1
Order $ 2 \cdot 3 $
Index $ 7 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, b^{238}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Ambient group ($G$) information

Description: $S_3\times C_{119}$
Order: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Exponent: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{119}$
Order: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Automorphism Group: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times C_{48}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{119}$
Normalizer:$S_3\times C_{119}$
Complements:$C_{119}$
Minimal over-subgroups:$S_3\times C_{17}$$S_3\times C_7$
Maximal under-subgroups:$C_3$$C_2$

Other information

Möbius function$1$
Projective image$S_3\times C_{119}$