Properties

Label 714.8.1.a1.a1
Order $ 2 \cdot 3 \cdot 7 \cdot 17 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{119}$
Order: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Index: $1$
Exponent: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Generators: $a, b^{255}, b^{238}, b^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, a Z-group (hence supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $S_3\times C_{119}$
Order: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Exponent: \(714\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times C_{48}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $D_6\times C_{48}$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{119}$
Normalizer:$S_3\times C_{119}$
Complements:$C_1$
Maximal under-subgroups:$C_{357}$$C_{238}$$S_3\times C_{17}$$S_3\times C_7$

Other information

Möbius function$1$
Projective image$S_3$