Properties

Label 705277476864.ie.8._.M
Order $ 2^{11} \cdot 3^{16} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^{12}.C_2^8.C_3^4.C_4.C_2$
Order: \(88159684608\)\(\medspace = 2^{11} \cdot 3^{16} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(1,36,25,22,3,34,27,24,2,35,26,23)(4,8,18,21,6,9,16,20,5,7,17,19)(10,14,12,15,11,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^{12}.C_2^8.C_3^4.D_4:D_4$
Order: \(705277476864\)\(\medspace = 2^{14} \cdot 3^{16} \)
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
$\operatorname{Aut}(H)$ Group of order \(1410554953728\)\(\medspace = 2^{15} \cdot 3^{16} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$2$
Möbius function not computed
Projective image not computed