Subgroup ($H$) information
Description: | $C_{16}$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$\left(\begin{array}{rr}
0 & 9 \\
306 & 0
\end{array}\right), \left(\begin{array}{rr}
283 & 0 \\
0 & 283
\end{array}\right), \left(\begin{array}{rr}
42 & 0 \\
0 & 42
\end{array}\right), \left(\begin{array}{rr}
352 & 0 \\
0 & 352
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Ambient group ($G$) information
Description: | $C_8.D_{44}$ |
Order: | \(704\)\(\medspace = 2^{6} \cdot 11 \) |
Exponent: | \(176\)\(\medspace = 2^{4} \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{22}.(C_2^4\times C_{20})$ |
$\operatorname{Aut}(H)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\operatorname{res}(S)$ | $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(40\)\(\medspace = 2^{3} \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{16}$ | |
Normalizer: | $\OD_{32}$ | |
Normal closure: | $C_{11}:\OD_{32}$ | |
Core: | $C_8$ | |
Minimal over-subgroups: | $C_{11}:C_{16}$ | $\OD_{32}$ |
Maximal under-subgroups: | $C_8$ |
Other information
Number of subgroups in this conjugacy class | $22$ |
Möbius function | $0$ |
Projective image | $D_{44}$ |