Properties

Label 704.65.44.f1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\left(\begin{array}{rr} 0 & 9 \\ 306 & 0 \end{array}\right), \left(\begin{array}{rr} 283 & 0 \\ 0 & 283 \end{array}\right), \left(\begin{array}{rr} 42 & 0 \\ 0 & 42 \end{array}\right), \left(\begin{array}{rr} 352 & 0 \\ 0 & 352 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_8.D_{44}$
Order: \(704\)\(\medspace = 2^{6} \cdot 11 \)
Exponent: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.(C_2^4\times C_{20})$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$\OD_{32}$
Normal closure:$C_{11}:\OD_{32}$
Core:$C_8$
Minimal over-subgroups:$C_{11}:C_{16}$$\OD_{32}$
Maximal under-subgroups:$C_8$

Other information

Number of subgroups in this conjugacy class$22$
Möbius function$0$
Projective image$D_{44}$