Properties

Label 704.65.1.a1.a1
Order $ 2^{6} \cdot 11 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8.D_{44}$
Order: \(704\)\(\medspace = 2^{6} \cdot 11 \)
Index: $1$
Exponent: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 97 & 0 \\ 0 & 222 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 91 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 306 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 352 \end{array}\right), \left(\begin{array}{rr} 34 & 0 \\ 0 & 135 \end{array}\right), \left(\begin{array}{rr} 231 & 0 \\ 0 & 217 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_8.D_{44}$
Order: \(704\)\(\medspace = 2^{6} \cdot 11 \)
Exponent: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}.(C_2^4\times C_{20})$
$\operatorname{Aut}(H)$ $C_{22}.(C_2^4\times C_{20})$
$W$$D_{44}$, of order \(88\)\(\medspace = 2^{3} \cdot 11 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_8.D_{44}$
Complements:$C_1$
Maximal under-subgroups:$C_8.D_{22}$$C_2\times C_{176}$$C_{11}:\OD_{32}$$\OD_{32}:C_2$

Other information

Möbius function$1$
Projective image$D_{44}$