Properties

Label 70.3.5.a1.a1
Order $ 2 \cdot 7 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_7$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(5\)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, b^{5}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{35}$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_7$
Normal closure:$D_{35}$
Core:$C_7$
Minimal over-subgroups:$D_{35}$
Maximal under-subgroups:$C_7$$C_2$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$D_{35}$