Properties

Label 69984.jj.36.MA
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3\times C_{18}).C_6^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ad^{3}, f^{3}, g^{7}, e^{3}f^{3}, d^{2}, g^{3}, e^{2}g^{6}, cf^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3^4.D_6^2$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
$W$$C_{1011}:C_{56}$, of order \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \)

Related subgroups

Centralizer: not computed
Normalizer:$D_4\times C_3^4.S_3^2$
Normal closure:$(C_3\times A_4).\He_3.C_6$
Core:$C_3^3.C_6^2$
Minimal over-subgroups:$(C_3\times A_4).\He_3.C_6$$(C_6\times C_9:C_3).C_6^2$$D_4\times (\He_3.S_3):C_3$$\He_3.C_3.(C_6\times D_4)$$\He_3.C_3.(C_6\times D_4)$
Maximal under-subgroups:$C_3^3.C_6^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$