Properties

Label 69984.jj.18.HA
Order $ 2^{4} \cdot 3^{5} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: not computed
Generators: $ad^{3}, g^{3}, f^{3}, cd^{2}f^{4}, b^{3}d^{3}, d^{2}, e^{2}g^{3}, g^{7}, e^{3}f^{3}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and supersolvable (hence solvable and monomial). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$D_4\times (C_3\times C_9):C_3^2:C_2^2$
Normal closure:$C_6^2.C_3^3.C_3.D_6$
Core:$C_3^3.C_6^2$
Minimal over-subgroups:$C_6^2.C_3^4.C_2^2$$C_3^4.C_3.C_6.C_2^3$$D_4\times (C_3\times C_9):C_3^2:C_2^2$
Maximal under-subgroups:$C_2\times C_3^3.S_3^2$$\He_3.(S_3\times C_{12})$$\He_3.(C_3\times D_{12})$$(C_3^2\times C_6).S_3^2$$\He_3.(C_6\times D_6)$$(C_3\times C_{18}).C_6^2$$C_6^2.(S_3\times C_3^2)$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$