Properties

Label 69984.jj.36.KE
Order $ 2^{3} \cdot 3^{5} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4\times D_9:C_3^2$
Order: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $b^{3}d^{3}, e^{3}, f^{3}, b^{2}, e^{2}, g^{3}, g^{7}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $D_9:C_3\times A_4:S_3^2$
$W$$C_{337}:C_{56}$, of order \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)

Related subgroups

Centralizer: not computed
Normalizer:$S_4\times S_3\times D_9:C_3$
Normal closure:$(C_3^3.C_3^3):C_2\times A_4$
Core:$C_6^2.C_3^3$
Minimal over-subgroups:$(C_3^4.C_3):C_2\times A_4$$(C_9.C_3^3):C_2\times A_4$$\He_3:(C_3\times S_3)\times A_4$$(\He_3.C_3):C_6\times A_4$$C_3\times S_4\times D_9:C_3$$S_3\times D_9:C_3\times A_4$$(C_9\times A_4).(C_6\times S_3)$
Maximal under-subgroups:$C_6^2.C_3^3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$