Properties

Label 69984.jj.18.GT
Order $ 2^{4} \cdot 3^{5} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: not computed
Generators: $ad^{3}, f^{3}, g^{7}, e^{2}, b^{3}d^{3}, b^{2}, e^{3}f^{3}, g^{3}, d^{2}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_4\times S_3\times D_9:C_3$
Normal closure:$C_6^2.C_3^3.C_3.D_6$
Core:$(A_4\times C_3^3).S_3$
Minimal over-subgroups:$C_6^2.C_3^4.C_2^2$$(C_9\times A_4).C_3^3.C_2^2$$C_6^2.C_3^4.C_2^2$$C_6^2.C_3^4.C_2^2$$S_4\times S_3\times D_9:C_3$
Maximal under-subgroups:$(A_4\times C_3^3).S_3$$A_4\times D_9:C_3^2$$C_3^3.(C_3\times S_4)$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$