Properties

Label 69984.jj.3.D
Order $ 2^{5} \cdot 3^{6} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Index: \(3\)
Exponent: not computed
Generators: $a, g^{3}, b^{2}, cd^{4}f^{2}, e^{3}f^{3}, b^{3}, d^{2}, e^{2}g^{6}, g^{7}, f^{3}, d^{3}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is maximal, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $S_4\times C_3^4.S_3^2$
Order: \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_3^4.S_3^2$, of order \(69984\)\(\medspace = 2^{5} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_5^4:D_6$, of order \(7500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_4\times \He_3:C_3^2:C_2^2$
Normal closure:$S_4\times C_3^4.S_3^2$
Core:$S_4\times (C_3\times C_9):(C_3\times C_6)$
Minimal over-subgroups:$S_4\times C_3^4.S_3^2$
Maximal under-subgroups:$S_4\times (C_3\times C_9):(C_3\times C_6)$$S_4\times \He_3:C_3^2:C_2$$S_4\times \He_3:(C_3\times S_3)$$\He_3:C_3^2:C_2^2\times A_4$$C_6^2.C_3^4.C_2^2$$C_6^2.C_3^4.C_2^2$$C_6^2.C_3^4.C_2^2$$D_4\times \He_3:C_3^2:C_2^2$$S_4\times S_3\times D_9:C_3$$C_3\times S_4\times C_3.S_3^2$$S_4\times C_3:D_9:S_3$$S_3\times \He_3:C_3^2:C_2^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_4\times C_3^4.S_3^2$