Properties

Label 696.36.4.a1.a1
Order $ 2 \cdot 3 \cdot 29 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{29}$
Order: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Generators: $a^{3}, a^{2}, c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $A_4\times D_{29}$
Order: \(696\)\(\medspace = 2^{3} \cdot 3 \cdot 29 \)
Exponent: \(174\)\(\medspace = 2 \cdot 3 \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times F_{29}$, of order \(19488\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 29 \)
$\operatorname{Aut}(H)$ $C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \)
$\operatorname{res}(S)$$C_2\times F_{29}$, of order \(1624\)\(\medspace = 2^{3} \cdot 7 \cdot 29 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$D_{29}$, of order \(58\)\(\medspace = 2 \cdot 29 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times D_{29}$
Normal closure:$A_4\times D_{29}$
Core:$D_{29}$
Minimal over-subgroups:$A_4\times D_{29}$
Maximal under-subgroups:$C_{87}$$D_{29}$$C_6$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$A_4\times D_{29}$