Properties

Label 6948.a.3.b1.a1
Order $ 2^{2} \cdot 3 \cdot 193 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_{12}$
Order: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Index: \(3\)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Generators: $a^{3}, a^{4}b^{2}, b^{3}, a^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_{579}:C_{12}$
Order: \(6948\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 193 \)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{192}.C_2$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_{12}$, of order \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{579}:C_{12}$
Complements:$C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_{579}:C_{12}$
Maximal under-subgroups:$C_{193}:C_6$$C_{193}:C_4$$C_{12}$
Autjugate subgroups:6948.a.3.b1.b16948.a.3.b1.c1

Other information

Möbius function$-1$
Projective image$C_{579}:C_{12}$