Properties

Label 6912.ln.2.c1
Order $ 2^{7} \cdot 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3\times A_4):\GL(2,\mathbb{Z}/4)$
Order: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(4,7)(5,6)(9,11)(10,13), (14,15), (4,6)(5,7), (1,2,3)(10,11,13), (1,3)(4,7,6,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3:S_4\times \GL(2,\mathbb{Z}/4)$
Order: \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_3.(C_3\times A_4^2).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times (C_2\times C_6^3).C_3:S_3.C_2^4$
$W$$C_2\times A_4^2.D_6$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3:S_4\times \GL(2,\mathbb{Z}/4)$
Complements:$C_2$ $C_2$ $C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_3:S_4\times \GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2^6:C_3^3$$A_4^2:D_6$$(C_3\times A_4^2):C_4$$(C_2\times C_6):\GL(2,\mathbb{Z}/4)$$(C_2\times C_6):\GL(2,\mathbb{Z}/4)$$(C_2\times C_6):\GL(2,\mathbb{Z}/4)$$A_4:\GL(2,\mathbb{Z}/4)$$A_4:\GL(2,\mathbb{Z}/4)$$C_6^2:S_4$$C_6^2:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2\times A_4^2.D_6$