Subgroup ($H$) information
| Description: | $(C_3\times A_4):\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) | 
| Index: | \(2\) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $\langle(4,7)(5,6)(9,11)(10,13), (14,15), (4,6)(5,7), (1,2,3)(10,11,13), (1,3)(4,7,6,5) \!\cdots\! \rangle$ | 
| Derived length: | $3$ | 
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and solvable. Whether it is monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_3:S_4\times \GL(2,\mathbb{Z}/4)$ | 
| Order: | \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_3.(C_3\times A_4^2).C_2^5$ | 
| $\operatorname{Aut}(H)$ | $C_2\times (C_2\times C_6^3).C_3:S_3.C_2^4$ | 
| $W$ | $C_2\times A_4^2.D_6$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | not computed | 
| Projective image | $C_2\times A_4^2.D_6$ | 
